Effect of TiO2 Nanoparticles on Capillary-Driven Flow in Water Nanofilters Based on Chitosan Cellulose and Polyvinylidene Fluoride Nanocomposites: A Theoretical Study

Polymers (Basel). 2022 Jul 17;14(14):2908. doi: 10.3390/polym14142908.

Abstract

In this study, a novel concept of nanofiltration process of drinking water based on capillary-driven nanofiltration is demonstrated using a bio-based nanocomposites' nanofilter as free power: a green and sustainable solution. Based on Lifshitz and Young-Laplace theories, we show that the chitosan (CS), cellulose acetate (CLA), and Polyvinylidene fluoride (PVDF) polymer matrixes demonstrate hydrophobic behavior, which leads to the draining of water from nanopores when negative capillary pressure is applied and consequently prevents the capillary-driven nanofiltration process. By incorporating 10%, 20%, and 30% volume fraction of titanium dioxide (TiO2) nanoparticles (NPs) to the polymers' matrixes, we demonstrate a wetting conversion from hydrophobic to hydrophilic behavior of these polymer nanocomposites. Subsequently, the threshold volume fraction of the TiO2 NPs for the conversion from draining (hydrophobic) to filling (hydrophilic) by capillary pressure were found to be equal to 5.1%, 10.9%, and 13.9%, respectively, for CS/TiO2, CLA/TiO2, and PVDF/TiO2 nanocomposites. Then, we demonstrated the negligible effect of the gravity force on capillary rise as well as the capillary-driven flow for nanoscale pore size. For nanofilters with the same effective nanopore radius, porosity, pore shape factor, and tortuosity, results from the modified Lucas-Washburn model show that the capillary rise as well as the capillary-driven water volume increase with increased volume fraction of the TiO2 NPs for all nanocomposite nanofilter. Interestingly, the capillary-driven water volume was in range (5.26-6.39) L/h·m2 with 30% volume fraction of TiO2 NPs, which support our idea for capillary-driven nanofiltration as zero energy consumption nano-filtration process. Correspondingly, the biodegradable CS/TiO2 and CLA/TiO2 nanocomposites nanofilter demonstrate capillary-driven water volume higher, ~1.5 and ~1.2 times, respectively, more than the synthetic PVDF/TiO2 nanocomposite.

Keywords: biocompatible; biodegradable; capillary-driven flow; nanocomposite; nanofilter; purification; water.