Dual-Modified Lignin-Assembled Multilayer Microsphere with Excellent Pb2+ Capture

Polymers (Basel). 2022 Jul 11;14(14):2824. doi: 10.3390/polym14142824.

Abstract

With the continuous research on lignin-based sorbents, there are still limitations in the research of spherical sorbents with a high adsorption capacity for Pb2+. In order to solve the problem of low adsorption effect, alkali lignin (AL) was modified and assembled to increase the adsorption active sites. In this work, we used dual-modified lignin (DML) as a raw material to assemble a singular lignin-based multilayer microsphere (LMM) with sodium alginate (SA) and dopamine. The prepared adsorbent had various active functional groups and spherical structures; the specific surface area was 2.14 m2/g and the average pore size was 8.32 nm. The adsorption process followed the Freundlich isotherm and the second-order kinetic model. Therefore, the LMM adsorbed Pb2+ ascribed by the electrostatic attraction and surface complexation; the adsorption capacity was 250 mg/g. The LMM showed a selective adsorption performance for Pb2+ and the adsorption capacity followed the order Pb2+ (187.4 mg/g) > Cu2+(168.0 mg/g) > Mn2+(166.5 mg/g). After three cycles, the removal efficiency of Pb2+ by the LMM was 69.34%, indicating the reproducibility of LMM.

Keywords: adsorption; heavy metal; lignin; waste water treatment.