The Influence of Tyrosol-Enriched Rhodiola sachalinensis Extracts Bioconverted by the Mycelium of Bovista plumbe on Scopolamine-Induced Cognitive, Behavioral, and Physiological Responses in Mice

Molecules. 2022 Jul 12;27(14):4455. doi: 10.3390/molecules27144455.

Abstract

Alzheimer's disease (AD) is an age-related neurodegenerative disorder characterized by cognitive deficits, which are accompanied by memory loss and cognitive disruption. Rhodiola sachalinensis (RSE) is a medicinal plant that has been used in northeastern Asia for various pharmacological activities. We attempted to carry out the bioconversion of RSE (Bio-RSE) using the mycelium of Bovista plumbe to obtain tyrosol-enriched Bio-RSE. The objective of this study was to investigate the effects of Bio-RSE on the activation of the cholinergic system and the inhibition of oxidative stress in mice with scopolamine (Sco)-induced memory impairment. Sco (1 mg/kg body weight, i.p.) impaired the mice's performance on the Y-maze test, passive avoidance test, and water maze test. However, the number of abnormal behaviors was reduced in the groups supplemented with Bio-RSE. Bio-RSE treatment improved working memory and avoidance times against electronic shock, increased step-through latency, and reduced the time to reach the escape zone in the water maze test. Bio-RSE dramatically improved the cholinergic system by decreasing acetylcholinesterase activity and regulated oxidative stress by increasing antioxidant enzymes (superoxide dismutase (SOD) and catalase (CAT)). The reduction in nuclear factor erythroid 2-related factor 2 (Nrf2)/heme oxygenase-1 (HO-1) signaling in the brain tissue due to scopolamine was restored by the administration of Bio-RSE. Bio-RSE also significantly decreased amyloid-beta 1-42 (Aβ1-42) and amyloid precursor protein (APP) expression. Moreover, the increased malondialdehyde (MDA) level and low total antioxidant capacity in Sco-treated mouse brains were reversed by Bio-RSE, and an increase in Nrf2 and HO-1 was also observed. In conclusion, Bio-RSE protected against Sco-induced cognitive impairment by activating Nrf2/HO-1 signaling and may be developed as a potential beneficial material for AD.

Keywords: Alzheimer’s disease; Nrf2/HO-1; Rhodiola sachalinensis; antioxidant; bioconversion.

MeSH terms

  • Acetylcholinesterase / metabolism
  • Alzheimer Disease* / chemically induced
  • Alzheimer Disease* / drug therapy
  • Alzheimer Disease* / metabolism
  • Animals
  • Antioxidants / metabolism
  • Cholinergic Agents / pharmacology
  • Cognition
  • Maze Learning
  • Memory Disorders / drug therapy
  • Mice
  • Mycelium / metabolism
  • NF-E2-Related Factor 2 / metabolism
  • Oxidative Stress
  • Phenylethyl Alcohol / analogs & derivatives
  • Plant Extracts / pharmacology
  • Plant Extracts / therapeutic use
  • Rhodiola* / metabolism
  • Scopolamine / pharmacology

Substances

  • Antioxidants
  • Cholinergic Agents
  • NF-E2-Related Factor 2
  • Plant Extracts
  • 4-hydroxyphenylethanol
  • Scopolamine
  • Acetylcholinesterase
  • Phenylethyl Alcohol