Effects of Impregnated Amidophosphonate Ligand Concentration on the Uranium Extraction Behavior of Mesoporous Silica

Molecules. 2022 Jul 6;27(14):4342. doi: 10.3390/molecules27144342.

Abstract

A series of solid-phase uranium extractants were prepared by post-synthesis impregnation of a mesoporous silica support previously functionalized with octyl chains by direct silanization. Five materials were synthesized with 0, 0.2, 0.3, 0.4 and 0.5 mmol of the amidophosphonate ligand DEHCEBP per gram of functionalized solid, and the effect of the ligand concentration on the uranium extraction efficiency and selectivity of the materials was investigated. Nitrogen adsorption-desorption data show that with increasing ligand loadings, the specific surface area and average pore volume decrease as the amidophosphonate ligand fills first the micropores and then the mesopores of the support. Acidic uranium solutions with a high sulfate content were used to replicate the conditions in ore treatment leaching solutions. Considering the extraction kinetics, the equilibration time was found to increase with the ligand concentration, which can be explained by the clogging of micropores and the multilayer arrangement of the DEHCEBP molecules in the materials with their highest ligand contents. The fact that the equilibrium ligand/uranium ratio is about 2 mol/mol regardless of the ligand concentration in the material suggests that all the ligand molecules remain accessible for extraction. The maximum uranium extraction capacities ranged from 30 mg∙g-1 at 0.2 mmol∙g-1 DEHCEBP to 54 mg∙g-1 in the material with 0.5 mmol∙g-1 DEHCEBP. These materials could therefore potentially be used as solid-phase uranium extractants in acidic solutions with high sulfate concentrations.

Keywords: capacity; effluent; extraction; functionalized silica; hybrid material; sulfate; uranium.

MeSH terms

  • Adsorption
  • Ligands
  • Silicon Dioxide
  • Sulfates
  • Uranium* / analysis

Substances

  • Ligands
  • Sulfates
  • Uranium
  • Silicon Dioxide