Multipath/NLOS Detection Based on K-Means Clustering for GNSS/INS Tightly Coupled System in Urban Areas

Micromachines (Basel). 2022 Jul 17;13(7):1128. doi: 10.3390/mi13071128.

Abstract

Due to the massive multipath effects and non-line-of-sight (NLOS) signal receptions, the accuracy and reliability of GNSS positioning solution can be severely degraded in a highly urbanized area, which has a negative impact on the performance of GNSS/INS integrated navigation. Therefore, this paper proposes a multipath/NLOS detection method based on the K-means clustering algorithm for vehicle GNSS/INS integrated positioning. It comprehensively considers different feature parameters derived from GNSS raw observations, such as the satellite-elevation angle, carrier-to-noise ratio, pseudorange residual, and pseudorange rate consistency to effectively classify GNSS signals. In view of the influence of different GNSS signals on positioning results, the K-means clustering algorithm is exploited to divide the observation data into two main categories: direct signals and indirect signals (including multipath and NLOS signals). Then, the multipath/NLOS signal is separated from the observation data. Finally, this paper uses the measured vehicle GNSS/INS observation data, including offline dataset and online dataset, to verify the accuracy of signal classification based on double-differenced pseudorange positioning. A series of experiments conducted in typical urban scenarios demonstrate that the proposed method could ameliorate the positioning accuracy significantly compared with the conventional GNSS/INS integrated navigation. After excluding GNSS outliers, the positioning accuracy of the offline dataset is improved by 16% and 85% in the horizontal and vertical directions, respectively, and the positioning accuracy of the online dataset is improved by 21% and 41% in the two directions. This method does not rely on external geographic information data and other sensors, which has better practicability and environmental adaptability.

Keywords: GNSS/INS tightly coupled system; K-means clustering algorithm; multipath/NLOS detection; urban areas.

Grants and funding

This work is partially supported by the National Key Research and Development Program of China (Grant No. 2021YFB3900804) and the Research Fund of Ministry of Education of China and China Mobile (Grant No. MCM20200J01).