Analysis of the Embodied Energy and CO2 Emissions of Ready-Mixed Concrete: A Case Study in Cuenca, Ecuador

Materials (Basel). 2022 Jul 14;15(14):4896. doi: 10.3390/ma15144896.

Abstract

Concrete is the most commonly construction material used worldwide. In contrast to other countries, Ecuador lacks studies that determine the environmental impact of the production of construction materials. This research presents a quantification of embodied energy and CO2 emissions associated with the concrete production, using as a case study a ready-mixed concrete plant in the city of Cuenca, Ecuador. The study was based on the Life Cycle Assessment methodology established by ISO 14040 and ISO 14044, and the 2006 Intergovernmental Panel of Experts on Climate Change (IPCC) Guidelines for National Greenhouse Gas Inventories. The production of ready-mixed concrete was considered for one year, with a "gate to gate" approach including the "transport of raw material" to the concrete plant and the subsequent "transport of final product" to the construction site. The results revealed that to produce 1 m3 of ready-mixed concrete, its production required 568.69 MJ of energy, accompanied by 42.83 kg CO2. Indirect transport generates the greatest environmental impact, especially the "transport of raw materials", which represents approximately 80% of the embodied energy and 79% of CO2 emission.

Keywords: carbon footprint; embodied energy; environmental impact; inventory; life-cycle assessment.