Reproducibility of 2D and 3D Ramus Height Measurements in Facial Asymmetry

J Pers Med. 2022 Jul 20;12(7):1181. doi: 10.3390/jpm12071181.

Abstract

In our clinic, the current preferred primary treatment regime for unilateral condylar hyperactivity is a proportional condylectomy in order to prevent secondary orthognathic surgery. Until recently, to determine the indicated size of reduction during surgery, we used a ‘panorex-free-hand’ method to measure the difference between left and right ramus heights. The problem encountered with this method was that our TMJ surgeons measured differences in the amount to resect during surgery. Other 2D and 3D method comparisons were unavailable. The aim of this study was to determine the most reproducible ramus height measuring method. Differences in left/right ramus height were measured in 32 patients using three methods: one 3D and two 2D. The inter- and intra-observer reliabilities were determined for each method. All methods showed excellent intra-observer reliability (ICC > 0.9). Excellent inter-observer reliability was also attained with the panorex-bisection method (ICC > 0.9), while the CBCT and panorex-free-hand gave good results (0.75 < ICC < 0.9). However, the lower boundary of the 95% CI (0.06−0.97) of the inter-observer reliability regarding the panorex-free-hand was poor. Therefore, we discourage the use of the panorex-free-hand method to measure ramus height differences in clinical practice. The panorex-bisection method was the most reproducible method. When planning a proportional condylectomy, we advise applying the panorex-bisection method or using an optimized 3D-measuring method.

Keywords: 3D virtual surgical planning; condylar resection; cone-beam computed tomography; hemimandibular elongation; hemimandibular hyperplasia; imaging; panoramic radiography; precision; unilateral condylar hyperplasia.

Grants and funding

This research received no external funding.