Design of Smart and Secured Healthcare Service Using Deep Learning with Modified SHA-256 Algorithm

Healthcare (Basel). 2022 Jul 9;10(7):1275. doi: 10.3390/healthcare10071275.

Abstract

Background: The modern era of human society has seen the rise of a different variety of diseases. The mortality rate, therefore, increases without adequate care which consequently causes wealth loss. It has become a priority of humans to take care of health and wealth in a genuine way.

Methods: In this article, the authors endeavored to design a hospital management system with secured data processing. The proposed approach consists of three different phases. In the first phase, a smart healthcare system is proposed for providing an effective health service, especially to patients with a brain tumor. An application is developed that is compatible with Android and Microsoft-based operating systems. Through this application, a patient can enter the system either in person or from a remote place. As a result, the patient data are secured with the hospital and the patient only. It consists of patient registration, diagnosis, pathology, admission, and an insurance service module. Secondly, deep-learning-based tumor detection from brain MRI and EEG signals is proposed. Lastly, a modified SHA-256 encryption algorithm is proposed for secured medical insurance data processing which will help detect the fraud happening in healthcare insurance services. Standard SHA-256 is an algorithm which is secured for short data. In this case, the security issue is enhanced with a long data encryption scheme. The algorithm is modified for the generation of a long key and its combination. This can be applicable for insurance data, and medical data for secured financial and disease-related data.

Results: The deep-learning models provide highly accurate results that help in deciding whether the patient will be admitted or not. The details of the patient entered at the designed portal are encrypted in the form of a 256-bit hash value for secured data management.

Keywords: CNN-LSTM; DNN; SHA-256 algorithm; deep learning; encryption; hospital management system.