Identification of a Prognostic Microenvironment-Related Gene Signature in Glioblastoma Patients Treated with Carmustine Wafers

Cancers (Basel). 2022 Jul 14;14(14):3413. doi: 10.3390/cancers14143413.

Abstract

Despite the state-of-the-art treatment, patients diagnosed with glioblastoma (GBM) have a median overall survival (OS) of 14 months. The insertion of carmustine wafers (CWs) into the resection cavity as adjuvant treatment represents a promising option, although its use has been limited due to contrasting clinical results. Our retrospective evaluation of CW efficacy showed a significant improvement in terms of OS in a subgroup of patients. Given the crucial role of the tumor microenvironment (TME) in GBM progression and response to therapy, we hypothesized that the TME of patients who benefited from CW could have different properties compared to that of patients who did not show any advantage. Using an in vitro model of the glioma microenvironment, represented by glioma-associated-stem cells (GASC), we performed a transcriptomic analysis of GASC isolated from tumors of patients responsive and not responsive to CW to identify differentially expressed genes. We found different transcriptomic profiles, and we identified four genes, specifically down-regulated in GASC isolated from long-term survivors, correlated with clinical data deposited in the TCGA-GBM dataset. Our results highlight that studying the in vitro properties of patient-specific glioma microenvironments can help to identify molecular determinants potentially prognostic for patients treated with CW.

Keywords: carmustine wafers; glioblastoma; patient’ derived in vitro model; transcriptomics; tumor microenvironment.