VxrB Influences Antagonism within Biofilms by Controlling Competition through Extracellular Matrix Production and Type 6 Secretion

mBio. 2022 Aug 30;13(4):e0188522. doi: 10.1128/mbio.01885-22. Epub 2022 Jul 26.

Abstract

The human pathogen Vibrio cholerae grows as biofilms, communities of cells encased in an extracellular matrix. When growing in biofilms, cells compete for resources and space. One common competitive mechanism among Gram-negative bacteria is the type six secretion system (T6SS), which can deliver toxic effector proteins into a diverse group of target cells, including other bacteria, phagocytic amoebas, and human macrophages. The response regulator VxrB positively regulates both biofilm matrix and T6SS gene expression. Here, we directly observe T6SS activity within biofilms, which results in improved competition with strains lacking the T6SS. VxrB significantly contributes to both attack and defense via T6SS, while also influencing competition via regulation of biofilm matrix production. We further determined that both Vibrio polysaccharide (VPS) and the biofilm matrix protein RbmA can protect cells from T6SS attack within mature biofilms. By varying the spatial mixing of predator and prey cells in biofilms, we show that a high degree of mixing favors T6SS predator strains and that the presence of extracellular DNA in V. cholerae biofilms is a signature of T6SS killing. VxrB therefore regulates both T6SS attack and matrix-based T6SS defense, to control antagonistic interactions and competition outcomes during mixed-strain biofilm formation. IMPORTANCE This work demonstrates that the Vibrio cholerae type six secretion system (T6SS) can actively kill prey strains within the interior of biofilm populations with substantial impact on population dynamics. We additionally show that the response regulator VxrB contributes to both T6SS killing and protection from T6SS killing within biofilms. Components of the biofilm matrix and the degree of spatial mixing among strains also strongly influence T6SS competition dynamics. T6SS killing within biofilms results in increased localized release of extracellular DNA, which serves as an additional matrix component. These findings collectively demonstrate that T6SS killing can contribute to competition within biofilms and that this competition depends on key regulators, matrix components, and the extent of spatial population mixture during biofilm growth.

Keywords: Vibrio cholerae; biofilm; type six secretion system.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Bacterial Proteins / genetics
  • Bacterial Proteins / metabolism
  • Biofilms
  • Extracellular Matrix / metabolism
  • Humans
  • Type VI Secretion Systems* / genetics
  • Type VI Secretion Systems* / metabolism
  • Vibrio cholerae* / metabolism

Substances

  • Bacterial Proteins
  • Type VI Secretion Systems