Developmental Toxic Effects of Thiram on Developing Zebrafish (Danio rerio) Embryos

Toxics. 2022 Jul 4;10(7):369. doi: 10.3390/toxics10070369.

Abstract

Thiram, an oxidized dimer of dithiocarbamate, has fungicidal and ectoparasiticidal roles. This study aimed to determine the effects of thiram on the development of zebrafish (ZF) embryos. The developmental toxicity test was performed in accordance with the OECD 236 test guidelines, and ZF embryos were subjected to several thiram concentrations and a DMSO (0.01%) control. Subsequently, embryo mortalities and developmental anomalies were evaluated at different hours post fertilization (hpf). Thiram was highly toxic to ZF, with calculated median lethal concentrations (LC50) of thiram at 48 and 96 h as 13.10 ± 2.17 and 8.87 ± 2.09 μg/L, respectively. Thiram-treated embryos/larvae exhibited a variety of deformities, such as abnormal somites, reduced eye pigment, abnormal tail shape, yolk sac edema, hatching defects, and curved spines, with a median effective concentration (EC50) of 3.88 ± 1.23, 5.04 ± 1.82, 6.23 ± 0.92, 5.24 ± 2.22, 1.39 ± 0.25, and 2.60 ± 0.82 μg/L, respectively. Teratogenic index (TI) values ranged from 1.42 to 6.66 for the scored deformities. At 48 hpf, the average heartbeat of the control group was 177.20 ± 5.63 per minute, while the highest thiram-treated group (40 μg/L) was 99.50 ± 18.12 per minute. In addition, cardiac-related issues, such as pericardial edema and abnormal blood flow, were observed in thiram-treated ZF embryos. Overall, these findings suggest that thiram is teratogenic to ZF.

Keywords: developmental toxicity; teratogen; thiram; zebrafish embryos.