Projections of land use change and habitat quality assessment by coupling climate change and development patterns

Sci Total Environ. 2022 Nov 15:847:157491. doi: 10.1016/j.scitotenv.2022.157491. Epub 2022 Jul 20.

Abstract

Exploring future land use changes and assessing the habitat quality remains a challenging topic for watershed ecological sustainability. However, most studies ignore the effects of coupled climate change and development patterns. In this study, a framework for assessing habitat quality under the influence of future land use change is constructed based on exploring the driving forces of land use change factors and integrating the system dynamics (SD) model, future land use simulation (FLUS) model and InVest model. The framework enables the projection of land use change and the assessment of habitat quality in the context of future climate change and different development strategies. Applying the framework to the Weihe River Basin, the main driving forces of land-use change in the Weihe River Basin were identified based on geographical detectors, and habitat quality assessment was realized for the Weihe River Basin under the coupled scenarios of three typical shared socioeconomic pathways and future development patterns (SSP126-EP, SSP245-ND, SSP585-EG). The results show that 1) population, precipitation, and temperature are the major driving factors for land use change. 2) The coupling model of SD and FLUS can effectively simulate the future trend of land use change, the relative error is within 2 %, and the overall accuracy is 93.58 %. 3) Significant differences in habitat quality as a result of modifications in land use patterns in different contexts. Affected by ecological protection, the habitat quality in SSP126-EP was significantly better than that in SSP245-ND and SSP585-EG. This research can provide references for future watershed ecological management decisions.

Keywords: Driving force detection; FLUS model; Habitat quality; Land use; Scenario simulation; System dynamics models.

MeSH terms

  • Climate Change*
  • Ecosystem*
  • Forecasting
  • Rivers