MoSBOTs: Magnetically Driven Biotemplated MoS2 -Based Microrobots for Biomedical Applications

Small. 2022 Aug;18(33):e2203821. doi: 10.1002/smll.202203821. Epub 2022 Jul 22.

Abstract

2D layered molybdenum disulfide (MoS2 ) nanomaterials are a promising platform for biomedical applications, particularly due to its high biocompatibility characteristics, mechanical and electrical properties, and flexible functionalization. Additionally, the bandgap of MoS2 can be engineered to absorb light over a wide range of wavelengths, which can then be transformed into local heat for applications in photothermal tissue ablation and regeneration. However, limitations such as poor stability of aqueous dispersions and low accumulation in affected tissues impair the full realization of MoS2 for biomedical applications. To overcome such challenges, herein, multifunctional MoS2 -based magnetic helical microrobots (MoSBOTs) using cyanobacterium Spirulina platensis are proposed as biotemplate for therapeutic and biorecognition applications. The cytocompatible microrobots combine remote magnetic navigation with MoS2 photothermal activity under near-infrared irradiation. The resulting photoabsorbent features of the MoSBOTs are exploited for targeted photothermal ablation of cancer cells and on-the-fly biorecognition in minimally invasive oncotherapy applications. The proposed multi-therapeutic MoSBOTs hold considerable potential for a myriad of cancer treatment and diagnostic-related applications, circumventing current challenges of ablative procedures.

Keywords: 2D materials; biotemplating; microrobots; minimally invasive medicine; phototherapy.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Disulfides
  • Infrared Rays
  • Molybdenum*
  • Nanostructures*
  • Phototherapy / methods

Substances

  • Disulfides
  • Molybdenum