Gradient-Based Pulsed Excitation and Relaxation Encoding in Magnetic Particle Imaging

IEEE Trans Med Imaging. 2022 Dec;41(12):3725-3733. doi: 10.1109/TMI.2022.3193219. Epub 2022 Dec 2.

Abstract

Magnetic particle imaging (MPI) is a radiation-free vessel- and target-imaging modality that can sensitively detect nanoparticles. A static magnetic gradient field, referred to as a selection field, is required in MPI to provide a field-free region (FFR) for spatial encoding. The image resolution of MPI is closely related to the size of the FFR, which is determined by the selection field gradient amplitude. Because of the limitations of existing gradient coil hardware, the image resolution of MPI cannot satisfy the clinical requirements of human in vivo imaging. Pulsed excitation has been confirmed to improve the image resolution of MPI by breaking down the 'relaxation wall.' This work proposes the use of a pulsed waveform magnetic gradient from magnetic resonance imaging to further improve the image resolution of MPI. Through alignment of the gradient direction along the field-free line (FFL), each location on the FFL is able to have a unique excitation field strength that generates a specific relaxation-induced decay signal. Through excitation of nanoparticles on the FFL with many gradient profiles, a high-resolution, one-dimensional (1D) image can be reconstructed on the FFL. For larger magnetic nanoparticles, simulation results revealed that a pulsed excitation field with a greater flat portion generates a 1D bar pattern phantom image with a higher correlation and spatial resolution. With parallel FFL and gradient coil movements, high-resolution, two-dimensional (2D) Shepp-Logan phantom and brain vessel maps were reconstructed through repetition of the spatially resolved measurement of magnetic nanoparticles on the FFL.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Humans
  • Magnetic Fields
  • Magnetic Resonance Imaging / methods
  • Magnetics*
  • Nanoparticles*
  • Phantoms, Imaging