Development of a GFP biosensor reporter for the unfolded protein response-signaling pathway in plants: incorporation of the bZIP60 intron into the GFP gene

Plant Signal Behav. 2022 Dec 31;17(1):2098645. doi: 10.1080/15592324.2022.2098645.

Abstract

The ability to measure the activation of the unfolded protein response (UPR) in plants is important when they are exposed to stressful environments. To this end, we developed a unique and versatile biosensor-reporter system to indicate the activation of UPR in living plant cells. The small cytoplasmically spliced intron from the bZIP60 locus was incorporated into the 5' end of the GFP gene, creating the 35S::bZIP60 intron:GFP construct. When this construct is transiently expressed in Arabidopsis protoplasts, the presence of the bZIP60 intron prevents GFP mRNA from being translated under non-UPR conditions. However, when UPR is activated, the IRE1 kinase/ribonuclease splices this intron from the GFP mRNA and its translation proceeds, generating GFP fluorescence. We demonstrated the utility of the system in Arabidopsis leaf protoplasts treated with DTT, which is a chemical inducer of UPR, followed by visualization and quantification using confocal microscopy. The 35S::bZIP60 intron:GFP construct was also expressed in protoplasts from an overexpressor line containing the coding sequence for the UPR-induced, protein folding chaperone, protein disulfide isomerase-9 (PDI9). PDI9 also influences the strength of the UPR signaling pathway. Protoplasts from WT and PDI9 overexpressor plants treated with DTT exhibited significantly higher GFP fluorescence relative to untreated protoplasts, indicating that the bZIP60 intron was spliced from the GFP mRNA in response to activation of UPR. RT-PCR further confirmed the higher induction of PDI9 and bZIP60 (total and spliced) mRNA levels in DTT-treated protoplasts relative to controls. This system can be adapted for monitoring crop stress and for basic studies dissecting the UPR signaling pathway.

Keywords: endoplasmic reticulum stress; unfolded protein response.

Publication types

  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Arabidopsis Proteins* / genetics
  • Arabidopsis Proteins* / metabolism
  • Arabidopsis* / metabolism
  • Basic-Leucine Zipper Transcription Factors / genetics
  • Basic-Leucine Zipper Transcription Factors / metabolism
  • Biosensing Techniques*
  • Endoplasmic Reticulum Stress
  • Introns
  • RNA, Messenger / genetics
  • Signal Transduction / genetics
  • Unfolded Protein Response / genetics

Substances

  • Arabidopsis Proteins
  • Basic-Leucine Zipper Transcription Factors
  • RNA, Messenger

Grants and funding

This work was supported by the National Science Foundation (grant MCB-0958107 to DC), US Federal Hatch projects (507H and 5030H to DC).