Boundary fluctuation dynamics of a phase-separated domain in planar geometry

Phys Rev E. 2022 Jun;105(6-1):064115. doi: 10.1103/PhysRevE.105.064115.

Abstract

Using phase-ordering kinetics and of renormalization group theories, we derive analytically the relaxation times of the long wavelength fluctuations of a phase-separated domain boundary in the vicinity of (and below) the critical temperature in the planar Ising universality class. For a conserved order parameter, the relaxation time grows like Λ^{3} at wavelength Λ and can be expressed in terms of parameters relevant at the microscopic scale: lattice spacing, bulk diffusion coefficient of the minority phase, and temperature. These results are supported by numerical simulations of 2D Ising models, enabling in addition calculating the nonuniversal numerical prefactor. We discuss the applications of these findings to the determination of the real timescale associated with elementary Monte Carlo moves from the measurement of long wavelength relaxation times on experimental systems or molecular dynamics simulations.