B16F10 Cell Membrane-Based Nanovesicles for Melanoma Therapy Are Superior to Hyaluronic Acid-Modified Nanocarriers

Mol Pharm. 2022 Aug 1;19(8):2840-2853. doi: 10.1021/acs.molpharmaceut.2c00212. Epub 2022 Jul 18.

Abstract

Some cancer cell membrane (CCM)-derived nanovesicles show strong homing effects and are used for targeted cancer therapy. By co-constructing the B16F10 cell membrane with a PEGylated phospholipid membrane, a new nanocarrier with a composite nanocrown structure was developed, which can evade immune recognition and actively target homologous melanoma. The nanocrowns have an encapsulation efficiency of more than 90% for paclitaxel and showed no significant difference (p > 0.05) from the PEGylated phospholipid membrane vesicles. Compared with the hyaluronic acid-modified PEGylated phospholipid membrane vesicles, the biomimetic nanocrowns enhanced the escape of nanovesicles from reticuloendothelial cells in vitro and extended the circulation time in vivo; moreover, the nanocrowns showed superior melanoma-targeted drug delivery capability and improved anticancer effects of paclitaxel as demonstrated by the inhibition of B16F10 cell proliferation and induction of apoptosis by interfering with microtubule formation. In contrast, the modification of hyaluronic acid did not increase the targeting capacity or antitumor effects of the nanocrowns, confirming that the superior targeting capacity was mediated by the exposed homologous CCMs rather than by hyaluronic acid. Our results demonstrate the potential of using biomimetic nanocrowns for active melanoma-targeted therapy.

Keywords: biomimetic nanoparticles; liposomes; melanoma; paclitaxel; tumor targeting.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Cell Line, Tumor
  • Cell Membrane
  • Humans
  • Hyaluronic Acid / chemistry
  • Melanoma* / drug therapy
  • Nanoparticles* / chemistry
  • Paclitaxel / therapeutic use
  • Phospholipids
  • Polyethylene Glycols

Substances

  • Phospholipids
  • Polyethylene Glycols
  • Hyaluronic Acid
  • Paclitaxel