Carbonyls from commercial, canteen and residential cooking activities as crucial components of VOC emissions in China

Sci Total Environ. 2022 Nov 10:846:157317. doi: 10.1016/j.scitotenv.2022.157317. Epub 2022 Jul 13.

Abstract

Cooking in China supply the large population with nutrition and, as a commercial activity, it also promotes the economic growth of Chinese society. The specific cooking styles in China can produce complex volatile organic compound (VOC) emissions. The resulting adverse effects on the environment and human health of carbonyls from cooking should not be ignored. We quantitatively evaluated the contribution of carbonyls to common VOCs (carbonyl/VOC ratio) from cooking activities in China through the establishment and comparison of the source profiles, emission factors (EFs), emission amount and ozone formation potential (OFP). It was found that carbonyls are crucial components of VOCs from commercial, canteen and residential cooking activities (COC, CAC and REC, respectively). The carbonyl/VOC ratio from cooking activities in China had EFs, emissions, and a total OFP of 22-65 %, 23-34 %, and 49-104 %, respectively. The high OFP was due to the high OFP emissions intensity (OFPEI) and maximum incremental reactivity (MIR) values of carbonyls. This indicates that to alleviate O3 pollution, OFP-based control measures that target carbonyls might be more efficient than measures that target common VOCs. Priority should be given to emission controlling COC emissions, specifically those from medium- and large-scale catering. Formaldehyde, acetaldehyde, and hexanal were the key carbonyl species that form O3 in the environment. Our findings imply that cooking-emitted carbonyls should not be overlooked in investigations of O3 formation and that these compounds should be subject to strict regulations.

Keywords: Carbonyl compounds; Cooking emissions; Emission factors and inventory; OFP; Volatile organic compounds.

MeSH terms

  • Air Pollutants* / analysis
  • China
  • Cooking
  • Environmental Monitoring
  • Humans
  • Ozone* / analysis
  • Vehicle Emissions / analysis
  • Volatile Organic Compounds* / analysis

Substances

  • Air Pollutants
  • Vehicle Emissions
  • Volatile Organic Compounds
  • Ozone