Emulsion-based, flexible and recyclable aerogel composites for latent heat storage

J Colloid Interface Sci. 2022 Dec:627:72-80. doi: 10.1016/j.jcis.2022.07.035. Epub 2022 Jul 9.

Abstract

Although emulsion-based, phase change material-encapsulated monolithic composites are promising for latent heat storage, their rigidity and non-recyclability imposed by the relatively dense covalent crosslinking hinder the composites from real applications. Herein, we report the fabrication of aerogel composites with flexibility and recyclability from cellulose nanocrystal-stabilized, octadecane-encapsulated Pickering emulsions solidified using physical gelation. The resulting monolithic composites exhibited controllable external shapes, and the introduction of poly(vinyl alcohol) significantly reduced the leakage of the encapsulated octadecane. The aerogel composites showed flexibility at temperature over 30 °C, and robust compressive behavior, without fracture at 70% compressive strain. The composites possessed similar heat storage (melting) temperature and heat release (crystallization) temperature to that of bulk octadecane, high heat capacity (up to 253 J.g-1) and high reusability, without obvious deterioration in heat capacity after 100 heating-cooling cycles. Moreover, the aerogel composites exhibited recyclability, simply by dissolving the composites in hot water to form emulsions and then by freeze drying to form aerogel composites. The flexibility and recyclability, together with robust compression, controllable external shapes, high heat capacity and good reusability, make the aerogel composites to be excellent candidates for latent heat storage.

Keywords: Emulsion templating; Flexibility; Phase change material; Recyclability.