Photonic Nanolaser with Extreme Optical Field Confinement

Phys Rev Lett. 2022 Jul 1;129(1):013902. doi: 10.1103/PhysRevLett.129.013902.

Abstract

We proposed a photonic approach to a lasing mode supported by low-loss oscillation of polarized bound electrons in an active nano-slit-waveguide cavity, which circumvents the confinement-loss trade-off of nanoplasmonics, and offers an optical confinement down to sub-1-nm level with a peak-to-background ratio of ∼30 dB. Experimentally, the extremely confined lasing field is realized as the dominant peak of a TE_{0}-like lasing mode around 720-nm wavelength, in 1-nm-level width slit-waveguide cavities in coupled CdSe nanowire pairs. The measured lasing characteristics agree well with the theoretical calculations. Our results may pave a way towards new regions for nanolasers and light-matter interaction.