Inflammation-homing "living drug depot" for efficient arthritis treatment

Acta Biomater. 2022 Sep 15:150:324-336. doi: 10.1016/j.actbio.2022.07.013. Epub 2022 Jul 15.

Abstract

Delivering therapeutic agents efficiently to inflamed joints remains an intractable problem in rheumatoid arthritis (RA) treatment due to the complicated physiological barriers. Circulating monocytes could selectively migrate to inflamed sites and differentiate into resident macrophages to aggravate RA. Therefore, a drug carrier that can be specifically internalized by circulating monocytes and switch monocytes into anti-inflammatory phenotype when reaching inflamed sites, might bypass the in vivo physiological barriers and achieve efficient RA therapy. Herein, we design a dextran sulfate (DS) functionalized nanoparticle (ZDNP) to selectively deliver anti-inflammatory agent dexamethasone (Dex) to circulating monocytes via the scavenger receptors on monocytes. Monocytes engulfing drug-loaded ZDNP could subsequently home to arthritic joints and act as a "living drug depot" to combat RA. Results revealed that ZDNP could be preferentially internalized by circulating monocytes when intravenously administrated in vivo. In a rat arthritic model, we found that circulating monocytes remarkably facilitated drug distribution and retention in inflamed joints. Moreover, monocytes engulfing drug-loaded nanoparticles exhibited favorable anti-inflammatory ability and M2-biased differentiation. Our work offers a facile approach to achieve site-directed anti-inflammatory therapy by taking advantage of the inflammation-homing ability of circulating monocytes. STATEMENT OF SIGNIFICANCE: Circulating monocytes can migrate to inflamed sites and then differentiate into macrophages to aggravate arthritis. Therefore, a drug carrier that can be specifically internalized by circulating monocytes and switch monocytes into anti-inflammatory phenotype when reaching inflamed sites may achieve efficient arthritis therapy. Here, we designed a monocyte-targeting nanoparticle (ZDNP) to selectively deliver anti-inflammatory Dex to circulating monocytes. When injected intravenously, ZDNP was effectively internalized by circulating monocytes via a scavenger receptor and subsequently was transported to arthritic joints, where monocytes engulfing the drug-loaded nanoparticles could switch to an anti-inflammatory phenotype to inhibit arthritis progress. We provide detailed evidence about the in vivo fate of ZDNP and unravel how monocytes act as a "living drug depot" to achieve site-directed arthritis therapy.

Keywords: Dextran sulfate; Drug delivery; Inflammation-homing; Monocyte; Rheumatoid arthritis.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Arthritis, Rheumatoid* / drug therapy
  • Drug Carriers / therapeutic use
  • Inflammation / drug therapy
  • Macrophages
  • Monocytes
  • Rats

Substances

  • Drug Carriers