Essential role of IL-17 in acute exacerbation of pulmonary fibrosis induced by non-typeable Haemophilus influenzae

Theranostics. 2022 Jul 4;12(11):5125-5137. doi: 10.7150/thno.74809. eCollection 2022.

Abstract

Background: Acute exacerbation (AE) of idiopathic pulmonary fibrosis (IPF) has a poor prognosis and lacks effective therapy. Animal models that mimic AE-IPF can greatly accelerate investigation of its pathogenesis and development of effective therapy. However, there are few reports of animal models of AE-IPF caused by bacteria. Thus, our study aimed to establish a mouse model of bacterium-induced AE-IPF and explore the potential pathogenic mechanism of AE-IPF. Methods: Mice were instilled intranasally with bleomycin (BLM) followed by non-typeable Haemophilus influenzae (NTHi) strain NT127. Murine survival, bacterial load, body weight and pulmonary histopathological changes were evaluated. We analyzed the T cell and inflammatory cell responses in the lungs. Results: Infection with 107 CFU NT127 triggered AE in mice with PF induced by 30 μg BLM. Compared with BLM-instilled mice, the BLM/NT127-treated mice showed more obvious airway inflammation, lower survival rate, higher inflammatory cell response, and increased proportions and numbers of IL-17+CD4+, IL-17+ γδ T, IL-22+CD4+ and regulatory T (Treg) cells in lungs. γδ T cells were the predominant source of IL-17. IL-17 gene knockout mice with AE-IPF had quicker body weight recovery, milder pulmonary inflammation and fibrosis, stronger IL-22+CD4+T, TGF-β+ γδ T and Treg cell responses, and weaker neutrophil and eosinophil responses than wild-type mice with AE-IPF. Conclusions: NTHi infection after BLM-induced IPF can cause AE-IPF in a murine model. This novel model can be used to investigate the pathogenesis of AE-IPF and develop new therapies for AE-IPF caused by bacteria. IL-17 is essential for the development of AE-IPF, and it may be a new therapeutic target for bacteria-induced AE-IPF.

Keywords: IL-17; acute exacerbations; idiopathic pulmonary fibrosis; nontypeable Haemophilus influenzae; γδ T cell.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, N.I.H., Extramural

MeSH terms

  • Animals
  • Bleomycin
  • Body Weight
  • Haemophilus influenzae
  • Idiopathic Pulmonary Fibrosis* / pathology
  • Interleukin-17*
  • Mice

Substances

  • Interleukin-17
  • Bleomycin