Chondrocyte-specific genomic editing enabled by hybrid exosomes for osteoarthritis treatment

Theranostics. 2022 Jun 21;12(11):4866-4878. doi: 10.7150/thno.69368. eCollection 2022.

Abstract

Rationale: A cell-specific delivery vehicle is required to achieve gene editing of the disease-associated cells, so the hereditable genome editing reactions are confined within these cells without affecting healthy cells. A hybrid exosome-based nano-sized delivery vehicle derived by fusion of engineered exosomes and liposomes will be able to encapsulate and deliver CRISPR/Cas9 plasmids selectively to chondrocytes embedded in articular cartilage and attenuate the condition of cartilage damage. Methods: Chondrocyte-targeting exosomes (CAP-Exo) were constructed by genetically fusing a chondrocyte affinity peptide (CAP) at the N-terminus of the exosomal surface protein Lamp2b. Membrane fusion of the CAP-Exo with liposomes formed hybrid CAP-exosomes (hybrid CAP-Exo) which were used to encapsulate CRISPR/Cas9 plasmids. By intra-articular (IA) administration, hybrid CAP-Exo/Cas9 sgMMP-13 entered the chondrocytes of rats with cartilage damages that mimicked the condition of osteoarthritis. Results: The hybrid CAP-Exo entered the deep region of the cartilage matrix in arthritic rats on IA administration, delivered the plasmid Cas9 sgMMP-13 to chondrocytes, knocked down the matrix metalloproteinase 13 (MMP-13), efficiently ablated the expression of MMP-13 in chondrocytes, and attenuated the hydrolytic degradation of the extracellular matrix proteins in the cartilage. Conclusion: Chondrocyte-specific knockdown of MMP-13 mitigates or prevents cartilage degradation in arthritic rats, showing that hybrid CAP-Exo/Cas9 sgMMP-13 may alleviate osteoarthritis.

Keywords: CRISPR/Cas9; MMP-13; Therapeutic genome editing; cartilage; hybrid exosome; osteoarthritis.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Cartilage, Articular* / metabolism
  • Chondrocytes / metabolism
  • Exosomes* / genetics
  • Exosomes* / metabolism
  • Gene Editing
  • Genomics
  • Liposomes / metabolism
  • Matrix Metalloproteinase 13 / genetics
  • Matrix Metalloproteinase 13 / metabolism
  • Osteoarthritis* / metabolism
  • Rats

Substances

  • Liposomes
  • Matrix Metalloproteinase 13