Construction of Ultrafine Ag2S NPs Anchored onto 3D Network Rodlike Bi2SiO5 and Insight into the Photocatalytic Mechanism

Inorg Chem. 2022 Jul 25;61(29):11387-11398. doi: 10.1021/acs.inorgchem.2c01665. Epub 2022 Jul 14.

Abstract

A novel three-dimensional (3D) network rodlike Ag2S/Bi2SiO5 photocatalyst with a p-n heterostructure composed of ultrafine Ag2S nanoparticles (NPs) and Bi2SiO5 nanosheets was prepared using an anionic self-regulation strategy by a two-step hydrothermal process. The architecture facilitated the efficient transfer and separation of photogenerated electron-hole pairs. The optimal Ag2S/Bi2SiO5 composite (ABSO0.10) exhibited an excellent reduction activity (93.5% Cr(VI) removal in wastewater containing 50 mg·L-1 Cr(VI) within 90 min under visible light), which was about 11.2 and 25.6 times higher than that of the pristine Ag2S and virgin Bi2SiO5, respectively. Assisted by experiments and density functional theory (DFT) calculations, a possible photocatalytic mechanism for Cr(VI) reduction over the Ag2S/Bi2SiO5 composite under visible-light irradiation was proposed.