Beneficial effects of gamma-irradiation of quinoa seeds on germination and growth

Radiat Environ Biophys. 2022 Aug;61(3):465-477. doi: 10.1007/s00411-022-00986-2. Epub 2022 Jul 14.

Abstract

Quinoa is one of the crops well-adapted to high altitude regions that can grow relatively well under drought, humid, and high UV radiation conditions. This study was performed to investigate the effects of gamma-radiation on quinoa. Seeds were treated with various doses of 50 Gy, 100 Gy, 200 Gy, 300 Gy, 400 Gy, 600 Gy, 800 Gy, and 1000 Gy. We investigated germination, as well as plant height, chlorophyll content, and normalized difference vegetation index (NDVI) at 0, 30, 44, 58, and 88 days after transplanting (DAT) and panicle weight at 88 DAT. The plants grown from the seeds treated at radiation doses greater than 200 Gy showed reduced values in most growth and physiological characteristics. The germination rate and germination speed were higher in the 50 Gy-treated seeds than in 0 Gy-treated (control) seeds. Plant height and panicle weight were highest in the plants from 50 Gy-treated seeds. Chlorophyll content was higher in all treated samples than in the controls. NDVI value showed the highest value in 0 Gy controls and plants treated with 50 Gy. The antioxidant activity was also higher in the plants from the seeds treated with 50 Gy and 100 Gy, showing a steady increase as the radiation dose increased even at 200 Gy. The plants from seeds treated with 0 Gy showed higher expression of proteins related to photorespiration and tubulin chains. The plants from seeds treated with 50 Gy induced more stress-responsive proteins.

Keywords: Gamma radiation; Hormesis; Plant; Seed.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Chenopodium quinoa* / metabolism
  • Chlorophyll / metabolism
  • Gamma Rays
  • Seeds / metabolism
  • Seeds / radiation effects

Substances

  • Chlorophyll