SlJAZ10 and SlJAZ11 mediate dark-induced leaf senescence and regeneration

PLoS Genet. 2022 Jul 13;18(7):e1010285. doi: 10.1371/journal.pgen.1010285. eCollection 2022 Jul.

Abstract

During evolutionary adaptation, the mechanisms for self-regulation are established between the normal growth and development of plants and environmental stress. The phytohormone jasmonate (JA) is a key tie of plant defence and development, and JASMONATE-ZIM DOMAIN (JAZ) repressor proteins are key components in JA signalling pathways. Here, we show that JAZ expression was affected by leaf senescence from the transcriptomic data. Further investigation revealed that SlJAZ10 and SlJAZ11 positively regulate leaf senescence and that SlJAZ11 can also promote plant regeneration. Moreover, we reveal that the SlJAV1-SlWRKY51 (JW) complex could suppress JA biosynthesis under normal growth conditions. Immediately after injury, SlJAZ10 and SlJAZ11 can regulate the activity of the JW complex through the effects of electrical signals and Ca2+ waves, which in turn affect JA biosynthesis, causing a difference in the regeneration phenotype between SlJAZ10-OE and SlJAZ11-OE transgenic plants. In addition, SlRbcs-3B could maintain the protein stability of SlJAZ11 to protect it from degradation. Together, SlJAZ10 and SlJAZ11 not only act as repressors of JA signalling to leaf senescence, but also regulate plant regeneration through coordinated electrical signals, Ca2+ waves, hormones and transcriptional regulation. Our study provides critical insights into the mechanisms by which SlJAZ11 can induce regeneration.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Arabidopsis Proteins* / genetics
  • Arabidopsis Proteins* / metabolism
  • Arabidopsis*
  • Calcium / metabolism
  • Cyclopentanes / metabolism
  • Gene Expression Regulation, Plant
  • Oxylipins / metabolism
  • Plant Senescence
  • Plants, Genetically Modified / metabolism
  • Regeneration / genetics
  • Signal Transduction / genetics

Substances

  • Arabidopsis Proteins
  • Cyclopentanes
  • Oxylipins
  • Calcium

Grants and funding

This work was supported by the National Natural Science Foundation of China (no.31872121, 31960526) and the Natural Science Foundation of Chongqing of China (csts2019jcyj-msxmX0094). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.