Insights into the role of reactive oxygen species in photocatalytic H2O2 generation and OTC removal over a novel BN/Zn3In2S6 heterojunction

J Hazard Mater. 2022 Sep 15:438:129483. doi: 10.1016/j.jhazmat.2022.129483. Epub 2022 Jun 27.

Abstract

Developing photocatalysts with superior performance to generate hydrogen peroxide (H2O2) and degrade oxytetracycline (OTC) is an effective strategy for the treatment of energy crisis and water purification. Herein, BN nanosheets were anchored onto the Zn3In2S6 microspheres for the research. Experimental and density functional theory (DFT) results demonstrate that due to different work functions and unique 2D/2D contact, the electron is spatially separated in BN/Zn3In2S6 nanocomposite, which increases the electron transfer efficiency from 43.7% (Zn3In2S6) to 55.6% (BN/ZIS-4). As a result, BN/ZIS-4 with optimal ratio of BN and Zn3In2S6 exhibits the highest OTC degradation efficiency (84.5%) and H2O2 generation rate (115.5 μmol L-1) under visible light illumination, which is 2.2 and 2.9 times than that of pristine Zn3In2S6. H2O2 generation is dominated by two pathways: two-step single-electron process (O2 → ∙O2- → H2O2) and another way (O2 → ∙O2-1O2 → H2O2). In the process of degrading OTC, ∙O2-, 1O2 and ∙OH are regarded as the main active species. This work offers a new insight for designing efficient, stable and reusable photocatalysts to solve current environmental conundrums.

Keywords: 2D/2D contact; BN/Zn(3)In(2)S(6); H(2)O(2) generation; OTC degradation.