Iron Dihydride Complex Stabilized by an All-Phosphorus-Based Pincer Ligand and Carbon Monoxide

Inorg Chem. 2022 Jul 25;61(29):11143-11155. doi: 10.1021/acs.inorgchem.2c01027. Epub 2022 Jul 11.

Abstract

PNP-pincer-stabilized iron carbonyl dihydride complexes are key intermediates in catalytic hydrogenation and dehydrogenation reactions; however, decomposition through these intermediates has been observed. This inspires the development of a PPP-pincer system that may show improved catalyst stability. In this work, bis[2-(diisopropylphosphino)phenyl]phosphine (or iPrPPHP) is used to react with FeCl2 under a carbon monoxide (CO) atmosphere to yield trans-(iPrPPHP)Fe(CO)Cl2. A subsequent reaction with NaBH4 produces syn/anti-(iPrPPHP)FeH(CO)Cl or cis,anti-(iPrPPHP)Fe(CO)H2, depending on the amount of NaBH4 employed. The cis-dihydride complex shows catalytic activity for the conversion of PhCHO to PhCH2OH (under H2) or PhCO2CH2Ph (under Ar). It also catalyzes the dehydrogenation of PhCH2OH to PhCHO and PhCO2CH2Ph, albeit with limited turnover numbers. A more efficient catalytic process is the dehydrogenation of formic acid to carbon dioxide (CO2), which can operate under additive-free conditions. Mechanistic investigation suggests that the cis-dihydride complex undergoes protonation with formic acid to release H2 while forming anti-(iPrPPHP)FeH(CO)(OCHO)·HCO2H, in which the CO ligand has shifted and the formate is hydrogen-bonded to formic acid. The hydrido formate complex loses CO2 under ambient conditions, completing the catalytic cycle by reforming the cis-dihydride complex.