Electrifying rhythms in plant cells

Curr Opin Cell Biol. 2022 Aug:77:102113. doi: 10.1016/j.ceb.2022.102113. Epub 2022 Jul 6.

Abstract

Physiological oscillations (or rhythms) pervade all spatiotemporal scales of biological organization, either because they perform critical functions or simply because they can arise spontaneously and may be difficult to prevent. Regardless of the case, they reflect regulatory relationships between control points of a given system and offer insights as read-outs of the concerted regulation of a myriad of biological processes. Here we review recent advances in understanding ultradian oscillations (period < 24h) in plant cells, with a special focus on single-cell oscillations. Ion channels are at the center stage due to their involvement in electrical/excitabile phenomena associated with oscillations and cell-cell communication. We highlight the importance of quantitative approaches to measure oscillations in appropriate physiological conditions, which are essential strategies to deal with the complexity of biological rhythms. Future development of optogenetics techniques in plants will further boost research on the role of membrane potential in oscillations and waves across multiple cell types.

Publication types

  • Review
  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Cell Communication*
  • Plant Cells*