Micromechanical Model for Predicting the Tensile Properties of Guadua angustifolia Fibers Polypropylene-Based Composites

Polymers (Basel). 2022 Jun 28;14(13):2627. doi: 10.3390/polym14132627.

Abstract

In this paper, the one-dimensional tensile behavior of Guadua angustifolia Kunth fibre/polypropylene (PP+GAKS) composites is modeled. The classical model of Kelly-Tyson and its Bowyer-Bader's solution is not able to reproduce the entire stress-strain curve of the composite. An integral (In-Built) micromechanical model proposed by Isitman and Aykol, initially for synthetic fiber-reinforced composites, was applied to predict micromechanical parameters in short natural fiber composites. The proposed method integrates both the information of the experimental stress-strain curves and the morphology of the fiber bundles within the composite to estimate the interfacial shear strength (IFSS), fiber orientation efficiency factor ηFOD, fiber length efficiency factor ηFLD and critical fiber length lc. It was possible to reproduce the stress-strain curves of the PP+GAKS composite with low residual standard deviation. A methodology was applied using X-ray microtomography and digital image processing techniques for the precise extraction of the micromechanical parameters involved in the model. The results showed good agreement with the experimental data.

Keywords: X-ray computed tomography; biobased composite; micro-mechanics; natural fiber; polymer-matrix composites (PMCs).

Grants and funding

This research was funded by Universidad Politécnica Salesiana within the framework of the research project Resolution: N° 009-008-2021-11-11.