Changes in Chemical and Thermal Properties of Bamboo after Delignification Treatment

Polymers (Basel). 2022 Jun 24;14(13):2573. doi: 10.3390/polym14132573.

Abstract

Bamboo delignification is a common method for studying its functional value-added applications. In this study, bamboo samples were delignified by treatment with sodium chlorite. The effects of this treatment on the bamboo's microstructure, surface chemical composition, and pyrolysis behaviour were evaluated. Field-emission scanning electron microscopy (FE-SEM), Fourier-transform infrared (FTIR) spectroscopy, X-ray photoelectron spectroscopy (XPS), and X-ray diffraction (XRD) were conducted to evaluate these parameters. The FTIR results demonstrated that the lignin peak decreased or disappeared, and some hemicellulose peaks decreased, indicating that sodium chlorite treatment effectively removed lignin and partly decomposed hemicellulose, although cellulose was less affected. The XPS results showed that, after treatment, the oxygen-to-carbon atomic ratio of delignified bamboo increased from 0.34 to 0.45, indicating a lack of lignin. XRD revealed increased crystallinity in delignified bamboo. Further pyrolysis analysis of treated and untreated bamboo showed that, although the pyrolysis stage of the delignified bamboo did not change, the maximum thermal degradation rate (Rmax) and its corresponding temperature (from 353.78 to 315.62 °C) decreased significantly, indicating that the pyrolysis intensity of the bamboo was weakened after delignification. Overall, this study showed that delignified bamboo develops loose surfaces, increased pores, and noticeable fibres, indicating that alkali-treated bamboo has promising application potential due to its novel and specific functionalities.

Keywords: bamboo; bamboo microstructure; chemical change; delignification; pyrolysis; thermal property.