Characterization of Four New Compounds from Protea cynaroides Leaves and Their Tyrosinase Inhibitory Potential

Plants (Basel). 2022 Jun 30;11(13):1751. doi: 10.3390/plants11131751.

Abstract

Protea cynaroides (king protea) is a flowering plant that belongs to the Proteaceae family. This multi-stemmed shrub is the national flower of South Africa and has important economic and medicinal values. Traditionally, the main therapeutic benefits of this plant species include the treatment of cancer, bladder, and kidney ailments. There are very limited reports on the isolation of phytochemicals and their biological evaluation from P. cynaroides. In this study, the leaves of P. cynaroides were air-dried at room temperature, powdered, and extracted with 80% methanol followed by solvent fractionation (hexane, dichloromethane, ethyl acetate, and butanol). The ethyl acetate and butanol extracts were chromatographed and afforded four new (1-4) and four known (5-8) compounds, whose structures were characterized accordingly as 3,4-bis(4-hydroxybenzoyl)-1,5-anhydro-D-glucitol (1), 4-hydroxybenzoyl-1,5-anhydro-D-glucitol (2), 2-(hydroxymethyl)-4-oxo-4H-pyran-3-yl-6-O-benzoate-β-D-glucopyranoside (3), 3-hydroxy-7,8-dihydro-β-ionone 3-O-β-D-glucopyranoside (4), 4-hydroxybenzoic acid (5), 1,5-anhydro-D-glucitol (6), 3,4-dihydroxybenzoic acid (7), and 3-hydroxykojic acid (8). The structural elucidation of the isolated compounds was determined based on 1D and 2D NMR, FTIR, and HRMS spectroscopy, as well as compared with the available literature data. The tyrosinase inhibitory activities of the extracts and isolated compounds were also determined. According to the results, compounds 7 and 8 exhibited potent competitive tyrosinase inhibitory activity against L-tyrosine substrates with IC50 values of 0.8776 ± 0.012 and 0.7215 ± 0.090 µg/mL compared to the control (kojic acid, IC50 = 0.8347 ± 0.093), respectively. This study is the first chemical investigation of compounds 1-4 from a natural source and the first report of the biological evaluation of compounds 1-5 against the tyrosinase enzyme. The potent anti-tyrosinase activity exhibited by P. cynaroides constituents will support future exploration of the plant in the cosmetic field upon further biological and clinical investigations.

Keywords: NMR spectroscopy; Protea cynaroides; Proteaceae; phytochemistry; tyrosinase.