Camera Trapping Reveals Spatiotemporal Partitioning Patterns and Conservation Implications for Two Sympatric Pheasant Species in the Qilian Mountains, Northwestern China

Animals (Basel). 2022 Jun 28;12(13):1657. doi: 10.3390/ani12131657.

Abstract

Studying the spatio-temporal niche partitioning among closely related sympatric species is essential for understanding their stable coexistence in animal communities. However, consideration of niche partitioning across multiple ecological dimensions is still poor for many sympatric pheasant species. Here, we studied temporal activity patterns and spatial distributions of the Blue Eared Pheasant (EP, Crossoptilon auritum) and Blood Pheasant (BP, Ithaginis cruentus) in the Qilian Mountains National Nature Reserve (QMNNR), Northwestern China, using 137 camera traps from August 2017 to August 2020. Kernel density estimation was applied to analyze diel activity patterns, and the Maxent model was applied to evaluate their suitable distributions and underlying habitat preferences. Eight Galliformes species were captured in 678 detection records with 485 records of EP and 106 records of BP over a total of 39,206 camera days. Their monthly activity frequencies demonstrate temporal partitioning but their diel activity patterns do not. Furthermore, 90.78% of BP distribution (2867.99 km2) overlaps with the distribution of EP (4355.86 km2) in the QMNNR. However, BP manifests a high dependence on forest habitats and shows larger Normalized Difference Vegetation Index (NDVI) values, while EP showed obvious avoidance of forest with NDVI greater than 0.75. Hence, differentiation in monthly activity patterns and partitioning in habitat preference might facilitate their coexistence in spatiotemporal dimensions. Conservation actions should give priority to highly overlapping areas in the center and east of the QMNNR and should strengthen forest landscape connectivity, as they provide irreplaceable habitats for these threatened and endemic Galliformes.

Keywords: Crossoptilon auritum; Ithaginis cruentus; activity pattern; camera traps; galliformes; habitat overlap; species distribution model (SDM).