Amyloid fil rouge from invertebrate up to human ageing: A focus on Alzheimer disease

Mech Ageing Dev. 2022 Sep:206:111705. doi: 10.1016/j.mad.2022.111705. Epub 2022 Jul 5.

Abstract

Amyloid fibrils and fibril-like structures are currently estimated to represent many different products of several genes in humans and play a key role in many types of proteinopathies, commonly associated with ageing process. They share the mutual feature of aggregation-prone proteins and the building up of molecular-supramolecular structure, such as inter-neuronal plaques in the brain of Alzheimer's Disease (AD) patients, characterized by an extraordinary strength. Noteworthy, this type of structure has been reported in different organisms, in particular in invertebrates. The aim of the current review is to focus on alpha and beta amyloids i.e., SAAs, SAP and APP, elucidating the structure and function of amyloid proteins in invertebrates (such as nematods, annelids, molluscs, insects, ascidians) and highlighting their striking pattern of functional conservation when compared to human amyloid-like fibrils, thus focusing on possible new studies and applications for innovative therapies, particularly for AD, the most common and worldwide type of dementia.

Keywords: Age-related diseases; Alpha-amyloid; Alzheimer Disease; Amyloid fibril-like; Beta-amyloid; Invertebrate amyloid structures.

Publication types

  • Review
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Aging
  • Alzheimer Disease* / metabolism
  • Amyloid / metabolism
  • Amyloid beta-Peptides / metabolism
  • Amyloidosis*
  • Animals
  • Humans
  • Invertebrates / metabolism

Substances

  • Amyloid
  • Amyloid beta-Peptides