Ring Ultramicroelectrodes for Current-Blockade Particle-Impact Electrochemistry

Anal Chem. 2022 Jul 19;94(28):10168-10174. doi: 10.1021/acs.analchem.2c01503. Epub 2022 Jul 6.

Abstract

In current-blockade impact electrochemistry, insulating particles are detected amperometrically as they impinge upon a micro- or nanoelectrode via a decrease in the faradaic current caused by a redox mediator. A limit of the method is that analytes of a given size yield a broad distribution of response amplitudes due to the inhomogeneities of the mediator flux at the electrode surface. Here, we overcome this limitation by introducing microfabricated ring-shaped electrodes with a width that is significantly smaller than the size of the target particles. We show that the relative step size is somewhat larger and exhibits a narrower distribution than at a conventional ultramicroelectrode of equal diameter.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Electrochemistry*
  • Electrodes
  • Oxidation-Reduction