Increase in Photocurrent Density of WO3 Photoanode by Placing a Layer of an Ordered Array of Mesoporous WO3 Micropillars on Top of a WO3 Sheet Layer

ACS Appl Mater Interfaces. 2022 Jul 20;14(28):31838-31850. doi: 10.1021/acsami.2c05107. Epub 2022 Jul 6.

Abstract

A facile stamping method was developed to assemble ordered arrays of mesoporous WO3 micropillars with uniform sizes, shapes, and lengths on F-doped tin oxide glass. Using this method, a series of WO3 heterostructural bilayer photoanodes consisting of an array of m-μm long ordered mesoporous WO3 micropillars at the top and the n-μm thick mesoporous WO3 plain sheet layer at the bottom (denoted as m/n) were prepared. Among them 2.5/7.5 displayed a steady state photocurrent density of 3.6 mA cm-2 at 1.23 V (vs RHE) under AM 1.5 (1 Sun), which is much higher than that of the plain 10-μm thick WO3 sheet (2.5 mA cm-2). This phenomenon occurs owing to the following six benefits: increases in charge carrier density, number of photogenerated electron, charge collection rate, thermodynamic feasibility for the vectorial charge transport from the outermost layer of the photoanode to the inner layer, the surface hydrophilicity, and the decrease in charge transfer resistance.

Keywords: carrier density increase; charge collection rate increase; charge transfer resistance decrease; higher surface hydrophilicity; photoelectrochemical water splitting; vectorial charge transfer.