Experimental spectra, electronic properties (liquid and gaseous phases) and activity against SARS-CoV-2 main protease of Fluphenazine dihydrochloride: DFT and MD simulations

J Mol Struct. 2022 Nov 5:1267:133633. doi: 10.1016/j.molstruc.2022.133633. Epub 2022 Jun 30.

Abstract

The Gaussian 09 DFT tool is used to investigate the formational electronic behaviour, reactivity analysis and biological properties of fluphenazine dihydrochloride (FDD). The quantum computation is used to determine the spectroscopic and vibrational assignments of FDD. The NBO method explains charge transfer and molecular interactions. Energy gap values are determined using FMO analysis in different solvents and toluene is a better solvent due to higher value of solvation energy. The UV-visible spectra are investigated in various solvents using the TD-DFT method. Electrostatic potential, the wave function related properties such as LOL, NCI and RDG are determined in gaseous phase. Furthermore, the drug likeness is analyzed. At last, a docking study with MD simulation is used to investigate FDD's antiviral activity against SARS-CoV-2 main protease.

Keywords: DFT; Fluphenazine; MD simulations; Reactivity analysis; Solvent effects.