The effect of selected bisphenols on model erythrocyte membranes of different cholesterol content

Chem Phys Lipids. 2022 Sep:247:105224. doi: 10.1016/j.chemphyslip.2022.105224. Epub 2022 Jul 2.

Abstract

Bisphenols belong to the group of environmental pollutants with proven harmful impact on human red blood cells. However, the exact effect of these substances may vary depending on the lipid composition of the cell membrane, since this structure is the first barrier between the cell interior and the external environment. The aim of this work was to analyze the influence of bisphenol A (BPA), bisphenol S (BPS) and their 1:1 mixture on model human erythrocyte membranes, composed of sphingomyelin (SM), phospatidylcholine (PC) and cholesterol (Chol). Due to the postulated correlation between the content of cholesterol in biomembranes and the toxic effect of bisphenols the model systems of different sterol concentrations (10, 20 and 40 mol% of Chol) were used in the studies. In the experiments, Langmuir monolayer technique accompanied with Brewster Angle Microscopy were applied and liposome properties were investigated. The obtained findings reveal that, in the investigated range of the sterol content, the effect of BPA, namely the changes of the organization and stability of model membranes and weakening of the attractive lipid-lipid interactions, is strongly dependent on the concentration of Chol in the system. The higher the sterol content, the stronger the BPA-induced alterations in membrane properties. However taking into account the results reported previously for the system containing 33.3% of cholesterol, it seems that the relationship between the effect of BPA and the amount of Chol is not linear for higher sterol concentrations. In contrast, BPS shows a much weaker influence on model erythrocyte membranes and does not act selectively on the systems studied. The effect of a mixture of BPA and BPS is intermediate between that of BPA and BPS used separately, however, the observed effects appear to be determined only by the presence of BPA in the system. Thus, the concentration of cholesterol in human erythrocyte membranes, which depends on factors such as age or health status, may play a key role in the toxic effects of BPA but not BPS.

Keywords: Bisphenols; Cholesterol; Erythrocytes; Model membranes.

MeSH terms

  • Benzhydryl Compounds*
  • Cholesterol
  • Erythrocyte Membrane*
  • Humans
  • Phenols
  • Sphingomyelins

Substances

  • Benzhydryl Compounds
  • Phenols
  • Sphingomyelins
  • Cholesterol
  • bisphenol A