Developing a Copper(II) Agent Based on His-146 and His-242 Residues of Human Serum Albumin Nanoparticles: Integration To Overcome Cisplatin Resistance and Inhibit the Metastasis of Nonsmall Cell Lung Cancer

J Med Chem. 2022 Jul 14;65(13):9447-9458. doi: 10.1021/acs.jmedchem.2c00698. Epub 2022 Jul 4.

Abstract

To overcome the resistance of nonsmall cell lung cancer (NSCLC) cells to cisplatin and inhibit their metastasis, we proposed to develop a Cu(II) agent based on the specific residue(s) of HSA nanoparticles (NPs) for multitargeting the tumor microenvironment (TME). To this end, we not only synthesized four Cu(II) 2-hydroxy-3-methoxybenzaldehyde thiosemicarbazone compounds (C1-C4), obtaining a Cu compound (C4) with significant cytotoxicity by studying their structure-activity relationships, but also revealed the binding mechanism of C4 to HSA through X-ray crystallography and confirmed the successful construction of a new HSA-C4 NPs delivery system. C4 and HSA-C4 NPs inhibited the A549cisR tumor growth and metastasis, and HSA NPs optimized the anticancer behavior of C4. We further confirmed the anticancer mechanism of the C4/HSA-C4 NP multitargeting TME to overcome cisplatin resistance: killing tumor cells by acting on the mtDNA and inducing apoptosis, polarizing M2-type macrophages to the M1-type, and inhibiting angiogenesis.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Antineoplastic Agents* / chemistry
  • Antineoplastic Agents* / pharmacology
  • Antineoplastic Agents* / therapeutic use
  • Carcinoma, Non-Small-Cell Lung* / drug therapy
  • Cell Line, Tumor
  • Cisplatin / pharmacology
  • Cisplatin / therapeutic use
  • Copper / chemistry
  • Humans
  • Lung Neoplasms* / drug therapy
  • Nanoparticles* / chemistry
  • Serum Albumin, Human / metabolism
  • Tumor Microenvironment

Substances

  • Antineoplastic Agents
  • Copper
  • Cisplatin
  • Serum Albumin, Human