Control of Morphology and Substrate Etching in InAs/InP Droplet Epitaxy Quantum Dots for Single and Entangled Photon Emitters

ACS Appl Nano Mater. 2022 Jun 24;5(6):8070-8079. doi: 10.1021/acsanm.2c01197. Epub 2022 May 30.

Abstract

We present a detailed atomic-resolution study of morphology and substrate etching mechanism in InAs/InP droplet epitaxy quantum dots (QDs) grown by metal-organic vapor phase epitaxy via cross-sectional scanning tunneling microscopy (X-STM). Two different etching processes are observed depending on the crystallization temperature: local drilling and long-range etching. In local drilling occurring at temperatures of ≤500 °C, the In droplet locally liquefies the InP underneath and the P atoms can easily diffuse out of the droplet to the edges. During crystallization, the As atoms diffuse into the droplet and crystallize at the solid-liquid interface, forming an InAs etch pit underneath the QD. In long-range etching, occurring at higher temperatures of >500 °C, the InP layer is destabilized and the In atoms from the surroundings migrate toward the droplet. The P atoms can easily escape from the surface into the vacuum, forming trenches around the QD. We show for the first time the formation of trenches and long-range etching in InAs/InP QDs with atomic resolution. Both etching processes can be suppressed by growing a thin layer of InGaAs prior to the droplet deposition. The QD composition is estimated by finite element modeling in combination with X-STM. The change in the morphology of QDs due to etching can strongly influence the fine structure splitting. Therefore, the current atomic-resolution study sheds light on the morphology and etching behavior as a function of crystallization temperature and provides a valuable insight into the formation of InAs/InP droplet epitaxy QDs which have potential applications in quantum information technologies.