Constrained unsupervised anomaly segmentation

Med Image Anal. 2022 Aug:80:102526. doi: 10.1016/j.media.2022.102526. Epub 2022 Jun 25.

Abstract

Current unsupervised anomaly localization approaches rely on generative models to learn the distribution of normal images, which is later used to identify potential anomalous regions derived from errors on the reconstructed images. To address the limitations of residual-based anomaly localization, very recent literature has focused on attention maps, by integrating supervision on them in the form of homogenization constraints. In this work, we propose a novel formulation that addresses the problem in a more principled manner, leveraging well-known knowledge in constrained optimization. In particular, the equality constraint on the attention maps in prior work is replaced by an inequality constraint, which allows more flexibility. In addition, to address the limitations of penalty-based functions we employ an extension of the popular log-barrier methods to handle the constraint. Last, we propose an alternative regularization term that maximizes the Shannon entropy of the attention maps, reducing the amount of hyperparameters of the proposed model. Comprehensive experiments on two publicly available datasets on brain lesion segmentation demonstrate that the proposed approach substantially outperforms relevant literature, establishing new state-of-the-art results for unsupervised lesion segmentation.

Keywords: Brain lesions; Constraint segmentation; Unsupervised anomaly localization.