Finite-element-based resonant ultrasound spectroscopy for measurement of multi-material samples

J Acoust Soc Am. 2022 Jun;151(6):3633. doi: 10.1121/10.0011516.

Abstract

Understanding the elastic properties of materials is critical for their safe incorporation and predictable performance. Current methods of bulk elastic characterization often have notable limitations for in situ structural applications, with usage restricted to simple geometries and material distributions. To address these existing issues, this study sought to expand the capabilities of resonant ultrasound spectroscopy (RUS), an established nondestructive evaluation method, to include the characterization of isotropic multi-material samples. In this work, finite-element-based RUS analysis consisted of numerical simulations and experimental testing of composite samples comprised of material pairs with varying elasticity and density contrasts. Utilizing genetic algorithm inversion and mode matching, our results demonstrate that elastic properties of multi-material samples can be reliably identified within several percent of known or nominal values using a minimum number of identified resonance modes, given sample mass is held consistent. The accurate recovery of material properties for composite samples of varying material similarity and geometry expands the pool of viable samples for RUS and advances the method towards in situ inspection and evaluation.