Image-driven hydrological parameter coupled identification of flood plain wetland conservation and restoration sites

J Environ Manage. 2022 Sep 15:318:115602. doi: 10.1016/j.jenvman.2022.115602. Epub 2022 Jun 28.

Abstract

A good many works focus on wetland vulnerability; some works also explore restoration sites at a very limited spatial extent. But the satellite image-driven hydrological data-based approach adopted in this work is absolutely new. Moreover, existing work only focused on identifying restoration sites in the present context, but for devising long-term sustainable planning, predicted hydrological parameters based on possible restoration sites may be an effective tool. Considering this, the present work focused on exploring hydrological data (water presence frequency (WPF), hydro-period (HP) and water depth (WD)) from time-series satellite images. This exploration may resolve the hydrological data scarcity of wetland over the wider geographical areas. Using these parameters, we developed wetland restoration and conservation sites for different historical years (2008, 2018) and predicted years (2028) using ensemble machine learning (EML) models. From the analysis, it was found that water depth, hydro-period and WPF became poorer over the period, and the trend may seem to continue in predicted years. Among the applied EML models, Random Subspace (RS) predicted wetland restoration and conservation sites precisely over others. The predicted area under high-priority restoration sites is 34% in 2018, which was 14% in 2008. In 2028, 12% more areas may fall in this priority level. Wetland away from main streams (mainly ortho-fluvial wetland) and fringe wetland parts should be given more priority for restoration. These present and predicted information will effectively help to frame sustainable wetland restoration planning.

Keywords: Ensemble machine learning and predicted restoration sites; Hydrological parameters; Spectral indices; Wetland restoration.

MeSH terms

  • Conservation of Natural Resources* / methods
  • Ecosystem
  • Floods
  • Hydrology
  • Water
  • Wetlands*

Substances

  • Water