Meter-scale and sub-second-resolution coherent Doppler wind LIDAR and hyperfine wind observation

Opt Lett. 2022 Jul 1;47(13):3179-3182. doi: 10.1364/OL.465307.

Abstract

Hyperfine wind structure detection is important for aerodynamic and aviation safety. Pulse coherent Doppler wind LIDAR (PCDWL) is a widespread wind remote sensing method with tunable spatial and temporal resolutions. However, meter scale and sub-second resolution are still challenging for PCDWL. This is because of the constraints among short laser pulse duration, spectral broadening, detection accuracy, and real-time processing. In this Letter, to further improve the spatial and temporal resolution of PCDWL, we optimize the optical design of a nanosecond fiber laser and telescope and adopt a new, to the best of our knowledge, algorithm called the even-order derivative peak sharpening technique. During the experiment, all-fiber PCDWL with spatial and temporal resolutions of 3 m and 0.1 s, respectively, is demonstrated. Two-day continuous observation of the wakes of the Chinese high-speed train shows detailed hyperfine wind structures. This is similar to a computational fluid dynamics simulation.