Hierarchical reinforcement learning for automatic disease diagnosis

Bioinformatics. 2022 Aug 10;38(16):3995-4001. doi: 10.1093/bioinformatics/btac408.

Abstract

Motivation: Disease diagnosis-oriented dialog system models the interactive consultation procedure as the Markov decision process, and reinforcement learning algorithms are used to solve the problem. Existing approaches usually employ a flat policy structure that treat all symptoms and diseases equally for action making. This strategy works well in a simple scenario when the action space is small; however, its efficiency will be challenged in the real environment. Inspired by the offline consultation process, we propose to integrate a hierarchical policy structure of two levels into the dialog system for policy learning. The high-level policy consists of a master model that is responsible for triggering a low-level model, the low-level policy consists of several symptom checkers and a disease classifier. The proposed policy structure is capable to deal with diagnosis problem including large number of diseases and symptoms.

Results: Experimental results on three real-world datasets and a synthetic dataset demonstrate that our hierarchical framework achieves higher accuracy and symptom recall in disease diagnosis compared with existing systems. We construct a benchmark including datasets and implementation of existing algorithms to encourage follow-up researches.

Availability and implementation: The code and data are available from https://github.com/FudanDISC/DISCOpen-MedBox-DialoDiagnosis.

Supplementary information: Supplementary data are available at Bioinformatics online.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Algorithms*
  • Benchmarking
  • Deep Learning*
  • Markov Chains