Conformational fingerprinting of allosteric modulators in metabotropic glutamate receptor 2

Elife. 2022 Jul 1:11:e78982. doi: 10.7554/eLife.78982.

Abstract

Activation of G protein-coupled receptors (GPCRs) is an allosteric process. It involves conformational coupling between the orthosteric ligand binding site and the G protein binding site. Factors that bind at non-cognate ligand binding sites to alter the allosteric activation process are classified as allosteric modulators and represent a promising class of therapeutics with distinct modes of binding and action. For many receptors, how modulation of signaling is represented at the structural level is unclear. Here, we developed fluorescence resonance energy transfer (FRET) sensors to quantify receptor modulation at each of the three structural domains of metabotropic glutamate receptor 2 (mGluR2). We identified the conformational fingerprint for several allosteric modulators in live cells. This approach enabled us to derive a receptor-centric representation of allosteric modulation and to correlate structural modulation to the standard signaling modulation metrics. Single-molecule FRET analysis revealed that a NAM (egative allosteric modulator) increases the occupancy of one of the intermediate states while a positive allosteric modulator increases the occupancy of the active state. Moreover, we found that the effect of allosteric modulators on the receptor dynamics is complex and depend on the orthosteric ligand. Collectively, our findings provide a structural mechanism of allosteric modulation in mGluR2 and suggest possible strategies for design of future modulators.

Keywords: GPCRs; allosteric modulation; biochemistry; chemical biology; conformational dynamics; molecular biophysics; none; single-molecule FRET; structural biology.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Allosteric Regulation
  • Allosteric Site
  • Binding Sites
  • Ligands
  • Receptors, Metabotropic Glutamate* / metabolism

Substances

  • Ligands
  • Receptors, Metabotropic Glutamate
  • metabotropic glutamate receptor 2