Interactions between central nervous system and peripheral metabolic organs

Sci China Life Sci. 2022 Oct;65(10):1929-1958. doi: 10.1007/s11427-021-2103-5. Epub 2022 Jun 24.

Abstract

According to Descartes, minds and bodies are distinct kinds of "substance", and they cannot have causal interactions. However, in neuroscience, the two-way interaction between the brain and peripheral organs is an emerging field of research. Several lines of evidence highlight the importance of such interactions. For example, the peripheral metabolic systems are overwhelmingly regulated by the mind (brain), and anxiety and depression greatly affect the functioning of these systems. Also, psychological stress can cause a variety of physical symptoms, such as bone loss. Moreover, the gut microbiota appears to play a key role in neuropsychiatric and neurodegenerative diseases. Mechanistically, as the command center of the body, the brain can regulate our internal organs and glands through the autonomic nervous system and neuroendocrine system, although it is generally considered to be outside the realm of voluntary control. The autonomic nervous system itself can be further subdivided into the sympathetic and parasympathetic systems. The sympathetic division functions a bit like the accelerator pedal on a car, and the parasympathetic division functions as the brake. The high center of the autonomic nervous system and the neuroendocrine system is the hypothalamus, which contains several subnuclei that control several basic physiological functions, such as the digestion of food and regulation of body temperature. Also, numerous peripheral signals contribute to the regulation of brain functions. Gastrointestinal (GI) hormones, insulin, and leptin are transported into the brain, where they regulate innate behaviors such as feeding, and they are also involved in emotional and cognitive functions. The brain can recognize peripheral inflammatory cytokines and induce a transient syndrome called sick behavior (SB), characterized by fatigue, reduced physical and social activity, and cognitive impairment. In summary, knowledge of the biological basis of the interactions between the central nervous system and peripheral organs will promote the full understanding of how our body works and the rational treatment of disorders. Thus, we summarize current development in our understanding of five types of central-peripheral interactions, including neural control of adipose tissues, energy expenditure, bone metabolism, feeding involving the brain-gut axis and gut microbiota. These interactions are essential for maintaining vital bodily functions, which result in homeostasis, i.e., a natural balance in the body's systems.

Keywords: adipose tissues; bone metabolism; central nervous system; gut microbiota; peripheral organs.

Publication types

  • Review

MeSH terms

  • Brain / metabolism
  • Central Nervous System / metabolism
  • Cytokines / metabolism
  • Insulins* / metabolism
  • Leptin*

Substances

  • Cytokines
  • Insulins
  • Leptin