CPK28-NLP7 module integrates cold-induced Ca2+ signal and transcriptional reprogramming in Arabidopsis

Sci Adv. 2022 Jul;8(26):eabn7901. doi: 10.1126/sciadv.abn7901. Epub 2022 Jun 29.

Abstract

Exposure to cold triggers a spike in cytosolic calcium (Ca2+) that often leads to transcriptional reprogramming in plants. However, how this Ca2+ signal is perceived and relayed to the downstream cold signaling pathway remains unknown. Here, we show that the CALCIUM-DEPENDENT PROTEIN KINASE 28 (CPK28) initiates a phosphorylation cascade to specify transcriptional reprogramming downstream of cold-induced Ca2+ signal. Plasma membrane (PM)-localized CPK28 is activated rapidly upon cold shock within 10 seconds in a Ca2+-dependent manner. CPK28 then phosphorylates and promotes the nuclear translocation of NIN-LIKE PROTEIN 7 (NLP7), a transcription factor that specifies the transcriptional reprogramming of cold-responsive gene sets in response to Ca2+, thereby positively regulating plant response to cold stress. This study elucidates a previously unidentified mechanism by which the CPK28-NLP7 regulatory module integrates cold-evoked Ca2+ signal and transcriptome and thus uncovers a key strategy for the rapid perception and transduction of cold signals from the PM to the nucleus.

MeSH terms

  • Arabidopsis Proteins* / genetics
  • Arabidopsis Proteins* / metabolism
  • Arabidopsis* / genetics
  • Arabidopsis* / metabolism
  • Gene Expression Regulation, Plant
  • Protein Kinases / genetics
  • Protein Kinases / metabolism

Substances

  • Arabidopsis Proteins
  • Protein Kinases
  • calcium-dependent protein kinase