COVID-19 lockdown introduces human mobility pattern changes for both Guangdong-Hong Kong-Macao greater bay area and the San Francisco bay area

Int J Appl Earth Obs Geoinf. 2022 Aug:112:102848. doi: 10.1016/j.jag.2022.102848. Epub 2022 Jun 20.

Abstract

In response to the coronavirus disease 2019 (COVID-19) pandemic, various countries have sought to control COVID-19 transmission by introducing non-pharmaceutical interventions. Restricting population mobility, by introducing social distancing, is one of the most widely used non-pharmaceutical interventions. Although similar population mobility restriction interventions were introduced, their impacts on COVID-19 transmission are often inconsistent across different regions and different time periods. These differences may provide critical information for tailoring COVID-19 control strategies. In this paper, anonymized high spatiotemporal resolution mobile-phone location data were employed to empirically analyze and quantify the impact of lockdowns on population mobility. Both the Guangdong-Hong Kong-Macao Greater Bay Area (GBA) in China and the San Francisco Bay Area (SBA) in the United States were studied. In response to the lockdowns, a general reduction in population mobility was observed, but the structural changes in mobility are very different between the two bays: 1) GBA mobility decreased by approximately 74.0-80.1% while the decrease of SBA was about 25.0-42.1%; 2) compared to SBA, the GBA had smoother volatility in daily volume during the lockdown. The volatility change indexes for GBA and SBA were 2.55% and 7.52%, respectively; 3) the effect of lockdown on short- to long-distance mobility was similar in GBA while the medium- and long-distance impact was more pronounced in SBA.

Keywords: COVID-19; Guangdong-Hong Kong-Macao Greater Bay Area; Human mobility; Non-pharmaceutical interventions; San Francisco Bay Area; Spatiotemporal pattern discovery.