A review of bioenergetic modelling for marine mammal populations

Conserv Physiol. 2022 Jun 21;10(1):coac036. doi: 10.1093/conphys/coac036. eCollection 2022.

Abstract

Bioenergetic models describe the processes through which animals acquire energy from resources in the environment and allocate it to different life history functions. They capture some of the fundamental mechanisms regulating individuals, populations and ecosystems and have thus been used in a wide variety of theoretical and applied contexts. Here, I review the development of bioenergetic models for marine mammals and their application to management and conservation. For these long-lived, wide-ranging species, bioenergetic approaches were initially used to assess the energy requirements and prey consumption of individuals and populations. Increasingly, models are developed to describe the dynamics of energy intake and allocation and predict how resulting body reserves, vital rates and population dynamics might change as external conditions vary. The building blocks required to develop such models include estimates of intake rate, maintenance costs, growth patterns, energy storage and the dynamics of gestation and lactation, as well as rules for prioritizing allocation. I describe how these components have been parameterized for marine mammals and highlight critical research gaps. Large variation exists among available analytical approaches, reflecting the large range of life histories, management needs and data availability across studies. Flexibility in modelling strategy has supported tailored applications to specific case studies but has resulted in limited generality. Despite the many empirical and theoretical uncertainties that remain, bioenergetic models can be used to predict individual and population responses to environmental change and other anthropogenic impacts, thus providing powerful tools to inform effective management and conservation.

Keywords: bioenergetic models; cetaceans; energy budgets; individual-based modelling; pinnipeds; population consequences of disturbance.